If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+7x=24
We move all terms to the left:
3x^2+7x-(24)=0
a = 3; b = 7; c = -24;
Δ = b2-4ac
Δ = 72-4·3·(-24)
Δ = 337
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{337}}{2*3}=\frac{-7-\sqrt{337}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{337}}{2*3}=\frac{-7+\sqrt{337}}{6} $
| 1/4x=3(-1/4+3) | | (-1)-6x=9-2x | | 2(x+5)=12x-100 | | w-13=7 | | 18–2g=4g | | 4(5x+20)=372 | | 3(4x+3)4=31 | | 3(x+7)= 45 | | 54+x+63=180 | | -1/4=3/4-w/5 | | F(x)=2+4x-3x^2 | | d+47=88 | | (x+3)2=196 | | 3(3x+1)=4(x+10) | | h-15=18 | | 3x73(x+7)=45 | | -9r=5r+4 | | (2x)+(3x-1)=(137-x) | | 30=b-50 | | 3x73(x+7)= 4545 | | -4•x-35=-1 | | 4(x-3)^2=9 | | x2-8x+16=18 | | x/500=0.75 | | 1.15n/22=550 | | f-43=12 | | (x+3)^2=196 | | 5=0.6x-2 | | 1.15n+22=550 | | 4x=159 | | 2-16x=6(-3+2) | | c+15=99 |